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INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS
MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB)

This investigation was completed as part of the ITS-IDEA Program which is one of three IDEA programs
managed by the Transportation Research Board (TRB) to foster innovations in surface transportation. It
focuses on products and result for the development and deployment of intelligent transportation systems
(ITS), in support of the U.S. Department of Transportation’s national ITS program plan. The other two
IDEA programs areas are Transit-IDEA, which focuses on products and results for transit practice in
support of the Transit Cooperative Research Program (TCRP), and NCHRP-IDEA, which focuses on
products and results for highway construction, operation, and maintenance in support of the National
Cooperative Highway Research Program (NCHRP). The three IDEA program areas are integrated to
achieve the development and testing of nontraditional and innovative concepts, methods and technologies,
including conversion technologies from the defense, aerospace, computer, and communication sectors that
are new to highway, transit, intelligent, and intermodal surface transportation systems.

The publication of this report does not necessarily indicate approval or endorsement of the findings,
technical opinions, conclusions, or recommendations, either inferred or specifically expressed therein, by
the National Academy of Sciences or the sponsors of the IDEA program from the United States
Government or from the American Association of State Highway and Transportation Officials or its
member states.
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1. Executive Summary

This report describes results from a joint Michigan/Berkeley project to develop
technology for robust traffic monitoring and automated vehicle control using
decision theory and probability. We have shown that high-level traffic
monitoring situations can be modeled using modern techniques, and that solving
such models in real time is computationally feasible.

Specifically, we have focused on models supporting the task of pIan recognition in
highway environments. These models are used to infer the intended behavior of
vehicles in traffic based on movement patterns and highway tactics (e.g., lane
changes). In addition to their use in traffic monitoring (e.g., for gathering
statistics of driver behavior), plan recognition models are indispensable for in-
vehicle applications of several sorts---for any task in which it is crucial to
anticipate movements of other vehicles.

Our models have been developed and encoded using off-the-shelf software, in
particular the Hugin TMM system. Using existing algorithms and some
enhancements developed as part of this project, all of our models can be solved
without prohibitive computational resources. For example, real-time
performance is easily achievable using hardware based on Pentium-class
processors. We have demonstrated this capability using H u g i n T M in a standalone
setup as well as in a driving simulator integrated with the SmartPATH
animation system for real-time visualization of traffic scenarios.

1.1. Overview of Results

In the course of this project, we have designed and implemented a range of
probabilistic models for sifuafion assessment in highway environments. Situation
assessment can be applied toward such tasks as traffic management and design,
emergency response, near-accident detection for intersection safety analysis, and
intelligent traffic signals. Decision-theoretic models for situation assessment can
also play a role in the intelligent control of vehicles. This project explored several
of these areas, focusing primarily on general traffic interpretation through
monitoring.

Our main conclusion is that current probabilistic reasoning methods based on
Bayesian-network technology ‘is indeed capable of supporting a range of traffic
interpretation tasks, including those based on in-vehicle and extra-vehicle
observation. Because the methods employ probabilistic reasoning, they are
robust to sensor error and other forms of uncertainty. Successful deployment of
this technology will depend on decreasing the cost of sensor technology (both
video processing and in-vehicle sensor use).

These conclusions are based on our experience over the past year in constructing,
testing, and integrating a variety of Bayesian-network models for a range of
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traffic-interpretation tasks. These tasks included both low-level interpretation
(e.g., lane-change detection), and high-level situation assessment (e.g., driver
plan recognition). Multilevel models can integrate these functions into a
comprehensive traffic-interpretation system.

Developing these models required a few technical enhancements to the currently
available modeling methods and probabilistic reasoning algorithms. Our most
significant technical advances were in the following areas (described in more
detail below):

l Methods for modifying the Bayesian network over time to support dynamic
probabilistic reasoning (Forbes et al., 1995).

l A framework for plan recognition that properly accounts for the context in
which the observed agent generated the plan, in addition to the planned
activity itself (Pynadath and Wellman,  1995).

l New anytime approximation methods for networks with continuous
variables, based on stochastic simulation (Kanazawa et al., 1995) and state-
space abstraction (Liu and Wellman,  1995).

1.2. Specific Developments

We have developed models and algorithms for deriving high-level descriptions
of traffic conditions, as well as the maneuvers and intentions of individual
vehicles, from visual observation of a traffic scene. Our probabilistic network
models represent both individual vehicles (their position, velocity, etc.) and
aggregate variables concerned with the interaction of vehicles (flow, travel time,
etc.). These models fuse information from a variety of sensors, which may be
noisy and error-prone. The models have been successfully integrated with real-
time visual processing on actual stationary highway monitoring video footage to
identify and track individual vehicles accurately.

This framework has been extended to handle reasoning over time, by adding
model elements to represent state variables at progressive time slices. At the next
level of abstraction, our plan recognition framework can capture the beliefs and
intentions of individual drivers and represent the dependence of their actions.
This dependence encapsulates the driver’s decision-making process in choosing a
maneuver, based on its goals and information state. With the resulting
probabilistic model, we use partial observations (e.g., lane changes, signals) of a
vehicle to efficiently infer the driver’s plan (e.g., passing, exiting) and project this
plan to predict future actions.

In addition to demonstrating traffic monitoring on stationary highway video, we
have demonstrated the use of similar integrated sensing and probabilistic
network reasoning in dynamic vehicle traffic simulation. Through integration
with a simple decision-tree based decision-making system, we have
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demonstrated autonomous intelligent driving. Our driving system is able to
maintain a sensible estimate of the current traffic situation from simulated sensor
inputs and negotiate a variety of challenging traffic contingencies. Our simulator
is integrated with the SmartPATH  animation system for real-time visualization
of the traffic scenarios.

Complex probabilistic networks often require prohibitive computational
resources for practical real-time traffic monitoring. We have designed,
implemented, and demonstrated new approximation algorithms for probabilistic
network inference especially well-suited to continual state updating and
predicting, as often required for traffic monitoring and control. These algorithms
produce the most accurate predictions possible within the time available for
inference. As more computation time is allocated, the algorithms become
increasingly accurate. In particular, we have implemented and tested algorithms
based on (1) stochastic simulation and (2) abstraction of state spaces on versions
of the models presented above.

2. Problem Statement

The purpose of this project was to investigate the feasibility of applying real-
time, decision-theoretic reasoning technology to the intelligent monitoring of
urban and freeway traffic and control of automated vehicles. The project built on
recent, successful work on visual processing of real and simulated traffic images
that is capable of identifying and tracking individual vehicles accurately. We
aimed to show that such inputs can be processed further using artificial
intelligence techniques, including probabilistic networks, to provide high-level
descriptions of traffic conditions and individual vehicle maneuvers and
intentions.

l

l

The problem of traffic interpretation is to derive a high-level description of what
is going on in a traffic situation based on low-level information about vehicle
movements. Low-level information includes vehicle tracks generated from visual
monitoring or road-based or vehicle-centered sensors. It can also include turn
signals and other indicators of drivers’ intentions-information that is typically
ignored in traffic monitoring schemes. High-level descriptions include
summaries of flow levels, driver actions, and patterns of vehicle configurations.
These descriptions can potentially be applied for congestion and flow analysis,
near-accident detection (for safety analysis and/or directing emergency
response), signal control, and development of high-fidelity driver models. Note
that these applications include both on-line traffic control functions and off-line
analysis tasks.

In particular, the automation of near-accident detection could provide crucial
data for allocating safety resources, without requiring that we accumulate data
on actual accidents (with the enormous social costs this entails). Visual
monitoring coupled with intelligent interpretation can detect near-accidents,
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giving reliable measures of likely actual accidents within days rather than
months or years.

To achieve our overall objectives for the project, our specific goals included:

l to develop a suite of probabilistic models for traffic situation assessment,

l to integrate these models with our existing software for highway driving
simulation, assessment of high-level visual image inputs, and probabilistic
model evaluation,

l to enhance available probabilistic inference technology to enable
successful processing of these models,

l to test these models on simulated highway situations, and

l to use the results of this experience to evaluate the overall feasibility of
probabilistic reasoning methods for traffic interpretation.

3. Research Approach

Currently available facilities for traffic assessment focus on relatively narrow
contexts and low-level sensor fusion. We believe that by deriving high-level
assessments of traffic situations and driver behavior, it can be possible to
recognize and even anticipate significant traffic events, thereby improving safety
and incident response. However, traffic monitoring at this level of abstraction is
quite difficult, largely due to the inherent uncertainty in driver behavior, traffic
dynamics, and interpretation of intended traffic movements. Standard stochastic
methods from control theory cannot easily capture the structural uncertainty in
alternate hypotheses about traffic situations.

Recent advances in probabilistic modeling technology by Artificial Intelligence
researchers have led to significant improvements in the flexibility of
specifications of probabilistic knowledge. Specifically, formalisms based on
Bayesian networks support the representation of arbitrary patterns of probabilistic
interdependence, and algorithms for exploiting the structure of relationships in
the model. This standard probabilistic network framework has been extended to
handle reasoning over time, by adding nodes to represent state variables at
progressive time slices. This project is the first to apply such dynamic probabilistic
networks to problems in traffic monitoring.

Our survey of the current state-of-the-art led us to conclude that existing
methods for traffic monitoring and situation assessment will prove too inflexible
for deployment in uncontrolled and dynamically changing environments. The
generality and normative status of the decision-theoretic approach, along with
recent computational advances in decision-theoretic reasoning, suggested that
the time was ripe for its application to traffic monitoring.
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The following enumerates some of the technical issues faced in the project.
Specific accomplishments in tackling these issues are presented in the Results
section.

3.1. Vehicle-Centered Models

In order to make appropriate control decisions, a driver must have accurate
information about its own vehicle state and the state of its surrounding traffic
environment. For example, a vehicle controller must know its own position,
velocity, and intentions, and it must monitor those of its neighboring vehicles. It
must also monitor road and weather conditions, since they may significantly
affect driving ability.

The state of a vehicle’s environment is only partially observable. Sensor
information for variables such as vehicle positions and velocities may be
incomplete and noisy, while driver intentions and road conditions may not be
directly measurable at all. Thus, a controller cannot make decisions based merely
upon the latest sensor readings. Rather, it must maintain estimates for the
random variables that together represent the state of the world, and it must make
its decisions based upon the joint probability distribution over all those variables.

3.2. Highway Models

In addition to models of individual vehicles, it is also important to model
aggregate traffic variables, such as flow on road segments, travel time across
various locations, etc. Such a model must accommodate information observable
from in-vehicle sensors, in-highway sensors, road monitoring sites, and other
sources of traffic data.

3.3. Dynamic Model Construction

Because traffic patterns evolve unpredictably, it is impractical to generate a
probabilistic model in advance that fits the actual situation encountered during
monitoring. Therefore, we must implement automated facilities to generate a
model structure on-line, exploiting the specific features of interest for the given
situation. In this project, we apply recent techniques for knowledge-based model
construction to produce customized Bayesian networks that address the special
features of traffic patterns observed dynamically by the visual input system.

Moreover, the networks themselves must be dynamic, that is, they must capture
the evolution of uncertain state variables over time. We employ dynamic Bayesian
networks, and rollup techniques to update the uncertain belief state at each time
stage.

a
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Since driver actions are normally limited to an enumerable set of maneuvers
(e.g., lane changes, passing, exiting), it is reasonable to categorize driver actions
at this high level. Recognizing the high-level maneuver being carried out can
help in assessing an overall situation and in predicting the future behavior of
drivers. To support maneuver recognition (or more generally, driver plan
recognition), we require a probabilistic model relating the maneuver of a single
car to observable features, from which we can categorize maneuvers and predict
future behavior given partial information.

3.5. Anytime Approximation

In some traffic monitoring contexts, solving Bayesian networks at high fidelity
may not be feasible or necessary. An alternate strategy is to employ
simplification and approximation methods to produce the most accurate
predictions possible given the available time for inference. As more computation
time is allocated, the algorithms become increasingly accurate. This approach is
called anytime inference in AI. The flexibility of anytime inference is especially
important when random variables are continuous, as exact solutions can require
an unbounded amount of computation.

4. Results

In the course of this project we have developed several probabilistic models for
traffic interpretation tasks. The models (developed at both Berkeley and
Michigan) have been integrated with the H u g i n T M probabilistic reasoning tool
and the SmartPATH  traffic simulator. Both systems are installed and running at
both project sites.

4.1. Vehicle-Centered Models

To maintain the vehicle controller’s belief state, we employ dynamic Bayesian
networks (DBNs). DBNs are an extension of Bayesian networks that allow
variables to take on different values over time. Figure 1 shows the general
structure of a DBN. Typically, observations are taken at regular “time slices”, and
a given network structure is replicated for each slice. DBNs  model their domains
as partially observable Markov processes, so nodes can be connected not only to
other nodes within the same time slice but also (and only) to nodes in the
immediately vehicle’s representation of the world conforms to this property, we
need not maintain the history of percepts to predict the next state since the
accumulated effect of its observations is captured in the current belief state.
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State Evolution Model

Sensor Model
Figure 1: The structure of a dynamic probabilistic  network. The ovals denote sets
of state nodes or sensor nodes. The arcs going from one slice to the next form the
state evolution model,  and the arcs going into the sensor nodes form the sensor
model. The shaded ovals denote observations available when predicting  the state
at time t+l.
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As implemented, the system monitors each vehicle tracked by the sensor system
with a separate DBN. Each network contains nodes for sensor observations, such
as vehicle position and velocity, as well as nodes for predicting driver intentions,
such as whether the driver intends to make a lane change or to slow down.

Like a Kalman filter, each network computes probability distributions for a
vehicle’s position and velocity based on both its latest observations  and its
previous state estimate (which reflects the influence of all previously observed
evidence). Unlike a Kalman filter, which is limited to Gaussian distributions, the
network predictions can be arbitrarily distributed. For example, if a vehicle were
approaching some debris directly in front of it, the network could predict that the
vehicle would move either to the right or to the left (but not straight) in order to
avoid the debris. Also, the network could easily incorporate additional sensor
information. If the sensor system recognized that a vehicle was flashing its right
turn signal, the network could make predictions that biased the vehicle’s position
towards the right.
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Engine
Status

Time Slice 0 Time Slice 1

Figure 2: Dynamic Bayesian network for one vehicle, including inter-slice arcs.
The smaller nodes  with thicker outlines  denote  sensor  observations.

To incorporate the influence of nearby vehicles, each network contains nodes
corresponding to those vehicles. For example, the Front Clear and Front Speed
Diff nodes in Figure 2 refer to “the space between this vehicle and the vehicle in
front”, and “the speed difference between this vehicle and the vehicle in front”,
respectively. Since the vehicle in front of or behind a given vehicle may change,
these indexical  nodes do not correspond to a specific vehicle. Instead, a
preprocessing step using sensor data determines the spatial relationships among
the vehicles and then sets the node states accordingly. Figure 2 shows an
example vehicle network for one time slice, along with the inter-slice links to the
next time slice.

4.2. Highway Models

Starting from standard deterministic models of traffic flow from the literature,
we have developed Bayesian networks that capture the inherent uncertainty in
congestion and the dynamics of traffic interactions. A schematic of the highest-
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passing maneuver, which we view as two successive lane shifts of opposite
direction. In our Bayesian network, the variable gen maneuver takes on a value
corresponding to the chosen plan.

We can also classify driving plans according to the acceleration. A driver may
decide to speed up, slow down, or maintain current speed, depending on the
current speed and the driver’s desired traveling speed. The variable acc
maneuver can take on one of the three values. The acceleration maneuver
depends on the lane maneuver if we do not consider the plan selection
mechanism. For instance, a deceleration is more likely with a right lane change
plan than with a plan to pass.

The variable spec pass represents more specific passing plans. If the driver
decides to pass, there are the options of passing on the left and passing on the
right. And even if the driver chooses to pass, there may be cars blocking both
lanes, forcing the driver to wait for another opportunity to pass. This variable
clearly depends on gen maneuver, since if a passing maneuver is not chosen,
then spec pass will be neither pass on left nor pass on right.

At this point we must model the initial world state. The current position and
speed of the car are important factors in the driver’s decision-making procedure,
and we assume that both are observable, to the driver as well as to us. We also
assume perfect sensors, but an extension to incorporate sensor noise is
straightforward, as we have shown in some of our other models.

The random variables x position and y position represent the car’s lane position
and distance from the highway’s start, respectively. The driver can be in one of
three lanes or may be off the highway, either preparing to enter or having just
exited. The y speed node, containing the car’s speed, initially depends on the
current node, since the farther left the lane, the faster its cars are usually
traveling.

We can also observe the presence of other cars around the driver of interest, who
must consider them in choosing a maneuver. For instance, if there is a car
blocking the driver’s front, then a passing maneuver is more likely. We can
observe any cars to the driver’s immediate front, back, left, and right, as well as
in the four diagonal directions. In the Bayesian network, the Boolean random
variable dir clr? represents the presence of any car immediately next to the
driver in the dir direction.

The model of agent formulation in this case is greatly simplified by the
assumption of perfect sensors, since the driver’s beliefs about the world
corresponds to the actual values in our simplified model. The only other factor in
the driver’s decision-making procedure is the driver’s mental state. In most
cases, the driver has the explicit goal of getting from one exit to another,
although we may not always which specific exits. The random variable exit
position represents the driver’s desired exit. All of the possible exit positions are

10



a

l

farther along the highway than the values of y position. If this were not the case,
then the current position would provide evidence that the desired exit is
probably not one that has been passed. Therefore, there would be a dependency,
but to simplify the network, we make the sets of y and exit positions disjoint.

Also, there may be some constraint on the travel time between these exits, or the
driver might have some target speed which is preferred for the duration of
travel. The random variable target y speed represents this preference, with its
values clustered around the speed limit. If the car has been on the highway for
enough time, then its current speed should provide some clue as to the driver’s
target speed. We could model this with a link from y  speed. On the other hand,
if we have been observing the car and its maneuvers for some time, then these
past observations should provide more conclusive evidence as to its target speed.
If this is the case, we can make the target speed independent of current speed
and encode our past observations in the prior probabilities. Our subnetwork in
Figure 4 makes this assumption.

This network also contains the intermediate belief random variables, at exit? and
at driver?. These reflect the driver’s belief about the proximity of the desired exit
and the desirability of the current speed, respectively. The at exit? variable
depends only on the current position and the preferred exit, and is true only
when the former is immediately before the latter. The at target? variable
depends only on the current and preferred speeds, and its value indicates
whether the current speed is too slow, too fast, or just right, with respect to the
target.

The agent’s beliefs about its capabilities are not represented explicitly. Instead,
the driver is assumed to know all of the possible plans. The planning process also
assumes that the driver has complete knowledge of how the plans can best
satisfy its preferences in the current context. Thus the plan selection mechanism
implicitly represents the driver’s beliefs about its capabilities.

We can now model plan selection with some reliability. In our Bayesian network,
the conditional probability table must specify the likelihood of certain maneuvers
under every possible combination of world situation and driver mental state.
Under most situations, there will be one maneuver that is clearly preferable. For
example, suppose that the driver is currently traveling below its target speed and
that there is another car directly in front while the lane to the left is clear. Then it
is likely that driver will pass the car on the left. The complete plan selection
subnetwork is shown in Figure 4. This model is closely related to the vehicle-
centered model, especially in its effort to model a driver’s decision-making
procedure.

11
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x position t0

exit position

at exit?

y position t0

 left clr? t0

frontL clr? t0

Figure 4: Planning process subnetwork.

The acceleration maneuver depends only on the desirability of the current speed.
Thus the sole link to acc maneuver is from at target?. If the driver is at the
target speed, then the current speed will be maintained. If the current speed is
too low, then the driver will choose an acceleration maneuver. Likewise, if the
current speed is too fast, then a deceleration maneuver will be chosen.

The lane change maneuver also depends on the desirability of the current speed.
For instance, a car traveling at its target speed is unlikely to change lanes.
However, there are other factors in the initial world state to consider. Obviously,
the current lane is important, since a car in the leftmost lane can not change lanes
to the left. In addition, the driver will consider any cars to the front or back. If
there is a car blocking the front and the driver’s current speed is too low, then a
simple acceleration could cause a collision. The driver may instead choose to
change lanes to the left. But a decision to change lanes must also consider the
presence of cars to the driver’s left or right, or any cars coming up from the back
left or right. The links to the gen maneuver node represent these dependencies.
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If the driver decides to pass, a direction must be chosen. Passing on the left is
preferable to passing on the right, but the current situation may not allow it. For
instance, any cars to the driver’s left or to the front left could block the passing
attempt. The same is true on the right side. If enough passing avenues are
blocked, then the driver may decide to delay the passing attempt or to perform
the initial lane change and wait to complete the pass.

There is no separate model of agent communication, but the extension is
straightforward. For instance, the car’s turn signal provides a simple mechanism
for a driver to announce the intended lane change. Currently, any
communication from the driver can only be modeled by directly instantiating
any variables of the mental state which are announced.

Since there is no observed activity, most of our inference will come from
observed effects. We must now model the dynamics of the traffic world,
beginning with the changes in the position and speed of the car. We can view the
actions of the driver to be transitions between world states. To simplify the
model, we ignore observations taking place while the driver is performing an
action. Thus, evidence is available only at the completion of a component action,
and there are three stages of observable variables, including the context, as can
be seen in Figure 5.

Figure 5 : Evidence subnetwork.

The evidence subnetwork includes the individual transitions in lane and speed,
which are completely unobservable. At each step, the driver can change one lane
to the left or right, or remain in the same lane. The driver can also increase,
decrease, or maintain speed. All of the plans we consider produce a two-step
action sequence. For instance, a plan to shift one lane to the left produces a left
lane change followed by a “remain in lane” act. The lat acc mx variables
represent the lane changes at step x, while fwd acc mx represents the acceleration
at step x.
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Our definition of the lane maneuvers completely determines the lane changes of
the action sequences. The individual shifts depend on the general lane maneuver,
as well as on the specific passing plan, but not on the acceleration maneuver.
Likewise, the individual accelerations are independent of the general lane
changes and the specific passing maneuvers if given the overall acceleration
plan.

Finally, we must define the dependencies of these effects. Most of the observable
variables depend on the driver’s previous action, as well as their own previous
values. For instance, the driver’s lane is completely determined if we know what
lane change just took place, as well as the lane value just before the change.
Likewise, the driver’s speed depends on the previous speed and whatever
acceleration action took place, although this is clearly not a deterministic
relationship.

The presence of other cars is a bit more complex, due to the driver’s movements.
For instance, after a left change, a car that was to the front and left is now
probably directly in front. But if the driver stays in the same lane, then we must
check whether there was a car blocking the front in the previous world state.
Therefore, each clearance variable depends on the previous action, as well as all
relevant clearance variables from the previous state. To simplify the network, we
ignore the presence of other cars in the evidence. We do consider them when
modeling plan selection, but since the driver’s actions do not directly affect the
other drivers’ positions, we ignore these effects. As with the context, we assume
perfect sensors, so there is no distinction between the actual and observed effects.

Figure 6 : Complete Bayesian network for maneuver recognition.

Once we have constructed the entire network, shown in Figure 6, we can handle
plan recognition in a wide range of useful driving situations. For instance,
suppose we are trying to predict the behavior of the car behind us as we are
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driving in the middle lane of a three-lane highway. We observe the car move into
the rightmost lane, and we want to determine if it is passing us, or preparing to
exit, or perhaps simply moving into the slower-moving lane.

Thus, in the context, we have observed front clr? t0 to be false and x position t0
to be the middle  lane. The only observed effect is that x position t1 is the right
lane. If we want to infer the driver’s plan, we can examine the gen maneuver?
node to see that the posterior probability of a one-lane right shift is 0.64, while
that of a pass is 0.35. The former is more plausible since we assume that drivers
prefer to pass on the left-hand side, so passing on the right has a relatively low
prior probability. There is a small probability (<0.01) that the car is about to exit,
since we have assumed no knowledge about the location of exits beyond the
prior probabilities.

l

If we are not interested in the driver’s plan, but only in the future lane position,
then we can examine the x position t2 node. The posterior probability that the
car will still be in the right lane is 0.65, while the probability that it will move to
the middle lane is 0.34. The difference between these beliefs and that of the
maneuvers arises from the nature of the passing maneuver. Even if the car
decides to pass, it may not be able to do so immediately do to surrounding cars.
In such a case, it will remain in its current lane until it can complete the
maneuver. Thus, there is a slight probability that the car will stay in the right
lane even if the driver has decided to pass.

l

0

Given no other contextual observations, it is reasonable to predict that the car
will remain in the right lane. However, if we also observed that there was
another car to our left, thus blocking the car behind us from passing on the left,
we can instantiate the frontL clr? t0 variable to be false. Repeating our
observation of the nodes of interest, we find that the posterior probability that
the car is passing has increased to 0.53, while that for the car simply shifting one
lane to the right has dropped to 0.46. The probabilities for x position t2 have
changed as well, to 0.51 and 0.48 respectively.

Thus, we are able to perform valuable inference with only a limited subset of the
possible observations. If we were to also observe that there were no other cars
nearby, other than those already considered, then we could instantiate the
remaining clearance context variables to be true. Doing so increases the posterior
probability that the maneuver is a pass to 0.61, while decreasing that for a one-
lane right shift to 0.39.

4.4. Anytime Approximation

4.4.1. State-Space Abstraction

In practical uncertain reasoning situations, computational resource limitations
often preclude exact solution of probabilistic models. A common strategy in such
cases is to fall back on inexact, approximate solutions, which trade accuracy and
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fidelity for computational time and/or space. The most typical approximation
approaches involve some form of abstraction -suppression or neglect of detail for
the purpose of simplification.

Abstraction and other approximation techniques are of particular interest for
inference in Bayesian networks. That computing exact conditional probabilities
in Bayesian networks is NP-hard suggests that ultimately, only approximate
solutions will be accessible. Although it has been shown that approximating a
conditional probability to a fixed degree of accuracy is also NP-hard, this does
not seriously damage the case for approximation. First, even without guarantees
of fixed degrees of accuracy, approximate methods offer reasonable prospects of
significant accuracy, which is a lot better than many alternatives. Second,
approximation offers us the opportunity to consider problems much larger than
we could otherwise, which may compensate substantially for a loss of accuracy.
And third, approximation methods often lend themselves well to anytime
algorithms, where the quality of solution grows smoothly with available
computation time, thus supporting robust performance over a range of time-
stressed situations.

Approximation by evaluating abstracted Bayesian networks has attracted
considerable attention in recent years. A Bayesian network may be abstracted by
neglecting dependencies or state distinctions between or within variables. In our
approach, we abstract the network by coarsening the granularity of the state
spaces of selected nodes. The granularity is then refined in successive iterations
as the computation progresses. Evaluation is terminated when the solution
becomes accurate enough, or the allotted computation time is exhausted.

procedure Abstract-Iter(OBN, evidence)

1. Generate an initial Abstract Bayesian Network with one superstate per
abstracted node.

2. Evaluate the probability distribution for each node given the evidence.

3. If all states for all nodes are elementary, return.

4. Split a superstate in an abstracted node.

5. Go to step 2.
Figure 7: The iterative abstraction procedure.

4.4.2. Sampling

A second anytime approach we have developed in the course of this project is a
new version of stochastic simulation designed particularly for DBNs (Kanazawa
et al., 1995). Specifically, we have introduced two new techniques, evidence
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reversal and survival of fittest sampling. Downstream evidence (i.e., observed nodes
with parents) can degrade performance of stochastic simulation. Evidence
reversal transforms a given network so that all evidence nodes are at the root.
This is a provably correct operation that yields significant improvement in
performance, especially in the type of DBNs used in our vehicle-centered model.
Survival of fittest sampling is based on the use of a fixed-size population of
samples. After each decision epoch, we extend the sample population by one
time slice. We randomize the repopulation process based on the likelihood of the
evidence given a particular sample (thus this algorithm is related to genetic
algorithms although there is no crossover in our approach).

5. Follow-on Work

The development of improved methods for traffic scene analysis has contributed
significantly to the success of a recent proposal submitted by UC Berkeley
(including S. Russell as co-PI) in response to the RFP for New Sensor Technology
for traffic surveillance from JPL (Ql0-1066-025). The project builds directly on
some of the Bayesian methods we have developed for tracking, and a follow-on
study will use the incident analysis networks. The effort will develop and test a
prototype vision-based surveillance system for wide-area deployment in freeway
and urban settings in the next 12 months. If successful, the system could be
deployed at upwards of 100,000 sites in the United States.

At Michigan, we are extending our research in Bayesian methods for pattern and
plan recognition, under funding from the Air Force Office of Scientific Research.
We will enhance our traffic maneuver model as necessary to test out new
techniques.

6. Conclusions

Our main findings to date confirm the feasibility of real-time probabilistic
reasoning in support of various traffic assessment applications. We have built a
variety of Bayesian network models, which have provided robust probabilistic
estimates of traffic states given partial information and limited inference time.

Previous to this project, there had been little or no overlap between research in
IVHS and decision-theoretic reasoning. One important contribution of this
project was to bring probabilistic and decision-theoretic reasoning methods to
bear on traffic sensing and control problems. We hope that our reports
describing this work to the respective research communities will increase cross-
fertilization between the fields.

Although we believe that the techniques demonstrated in this project will
ultimately prove valuable in collision-avoidance systems, it appears that the
sensors necessary to support vehicle-centered probabilistic reasoning will not be
widely available in the near term. In contrast, the requirements for visual
monitoring of traffic situations from a fixed location appear to be relatively
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reasonable. Traffic monitoring stations using probabilistic reasoning techniques
can be deployed to collect data on traffic maneuvers, driving behavior, and
incidents, for use in safety analysis, traffic engineering, long-term planning, and
improvement of driver models.
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